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Abstract—A quasi-chemical model for illites has been derived, and local electrostatic balance has been
added to a random regular solution site-mixing model for illites (STOESSELL, 1979). Each model assumes
similar order—disorder conditions for both the end-members micas and the solid solution. Thermo-
dynamic properties of illites predicted by the random, electrostatic, and quasi-chemical models are
compared as a function of composition. For natural illite compositions, molar entropies of mixing in the
electrostatic model are about 1 entropy unit less than those in the random model. Intermediate values
are given by the quasi-chemical model. Each model predicts an increased entropy of mixing in domi-
nantly trioctahedral illites as compared to dioctahedral illites. Each model also predicts destabilization
of trioctahedral illites using absolute molar exchange energies greater than 2 RT/Z,, where Z, is the
number of adjacent cation interactions per site in the Xth site class. The most negative free energies of
mixing are predicted by the quasi-chemical model. Intermediate values predicted by the random model
are apparently the result of error cancellation due to overestimation of both the entropy and enthalpy of

mixing.

NOMENCLATURE

A
Al Fe, K, Mg, Si

Q
aj

ann, mus, phl, pyr

Aamixs Aﬁmixa AS_mix

gi

gx.j

LOT

Ix

mX,

*
mX5., mX, .

Avogadro’s number

AIP*, Fe?*, K*, Mg?*, and
Si** cations

Ideal activity of the jth end-
member

Annite. muscovite, phlogopite,
and pyrophyllite end-members
Parameter of y, z in eqn (10)
Constant 1n eqn (10)

Empty lattice site

Exchange energy defined by
eqn (7) for one mole of y,z
adjacent cation interactions
Energy due to adjacent cation
interactions in the Xth site
class of the jth end-member or
solution

Free energy, enthalpy, and
entropy of mixing one mole of
structural units

Number of distinguishable
cation permutations in the ith
cation combination of a struc-
tural unit

Number of distinguishable
lattice configurations having
energy €x

Interlayer, octahedral, and
tetrahedral site classes
Boltzmann’s constant

Number of sites per structural
unit in the Xth site class
Number of moles of y site
occupancies in the Xth site
class of the jth end-member or
solution

Number of moles of y,z inter-
actions in the Xth site class of
the jth end-member or solution
in the random and quasi-
chemical models, respectively
Number of moles of j struc-
tural units

nx}’.z

P;

Number of moles of y,z inter-
actions due to mixing in the
Xth site class

Probability of a structural unit
having the ith cation combi-
nation

Universal gas constant

AS,.;, in an ideal solution and
within the Xth site class of an
ideal solution, respectively
Temperature in degrees Kelvin
Defined in eqn (1)

Molar site interaction par-
ameters in the random model
defined by STOESSELL (1979) in
eqns (28), (29), (30), and (27), re-
spectively

Energy due to one mole of y,z
interactions in the Xth site
class

Mole fraction of the jth end-
member

Number of adjacent cation in-
teractions per site in the Xth
site class

Partition function for mixing
in the illite solution defined by
eqn (8)

Partition function for mixing
in the jth end-member or sol-
ution defined by eqn (9).

INTRODUCTION

A RANDOM regular solution site-mixing model for
illites was presented in an earlier paper (STOESSELL,
1979). That model contained mica end-members and
assumed independent random mixing of cations
within several site classes.

The random model did not maintain local electro-
static balance or consider the effects of exchange
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energies in the mixing process. The constraint of
maintaining a local charge balance has been shown to
significantly affect cation distributions in site-mixing
feldspar models (KERRICK and DARKEN, 1975; ANDER-
soN and Mazo, 1979). Significant lattice effects in
cation exchange in aluminosilicate models due to
exchange energies have been derived by BARRER and
KriNnowsk1 (1977, 1979). The consequences of neglect-
ing these constraints in the random illite model need
to be determined.

Two models for illites are presented in this paper,
an electrostatic model and a quasi-chemical model.
The former maintains local electrostatic balance, and
the latter considers exchange energies in computing
the numbers of adjacent pairs of cations.

Thermodynamic properties predicted by the ran-
dom, electrostatic, and quasi-chemical models are
compared as a function of composition. The relative
significance of assumptions unique to each model are
determined, and tentative conclusions are drawn as to
each model’s validity in geochemical calculations.

THE MODELS

Cations from 4 mica end-members are mixed in a solid
solution to simulate an illite. These end-members include 2
dioctahedral micas, muscovite (mus) [KAI,AlISi; O, o(OH),]
and pyrophyllite (pyr) [Al;SisO¢(OH),], and 2 tri-
octahedral micas, phlogopite (phl) [KMg;AlISi;0,o(OH),]
and annite (ann) [KFe;AlSi;0,,(OH),]. Cation distribu-
tions are constrained by similar mixing rules in both the
end-members and the solid solution. Cation mixing takes
place over sites within the octahedral (O), tetrahedral (T),
and interlayer (I) site classes. Mixing of cations between
different site classes is not allowed. Cations of the same
species are not distinguishable. In all models the mixing
process takes place under constant pressure with an
assumed zero volume change, making the enthalpy of mix-
ing equal to the internal energy of mixing and for equival-
ent Gibbs and Helmholtz free energies of mixing.

Within the quasi-chemical model, the numbers of dis-
tinguishable pairs of adjacent cations are subject to a
Boltzmann’s distribution relative to the appropriate
exchange energies. Placement of these pairs on the lattice is
done randomly, assuming the pairs are independent.
Within the electrostatic model, random mixing of cations is
assumed subject to the constraint of electrostatic balance
in each structural unit.

The end-member formulas given above have a total
cation valence of 22. In this study an illite structural unit
will consist of 8 distinguishable lattice sites occupied by
cations having this total valence. These sites are arranged
on 4 sequential lattice planes parallel to (001). Sites on each
plane are limited to only 1 site class. Sequentially, there are
2 T sites, 3 O sites, 2 T sites, and 1 I site on the 4 sheets.
The lattice relationships of the cation sites are shown by
DEER et al. (1976, Fig. 3). Each O site and I site has 6
adjacent sites, and each T site has only 3. An arbitrary
division of a lattice into structural units results in 1/3 of the
adjacent site interactions in the T and O classes occurring
within units. The remaining site interactions occur between
units.

Anion mixing is not considered because anions of the
same species occupy similar classes of sites in the mica
end-members. Mixing of identical anions will not produce
distinguishable permutations adding to the configurational
entropy. Adjacent anion interactions will not contribute to

RoNALD K. STOESSELL

the enthalpy of mixing (excess enthalpy) because they will
cancel out between the solid solution and the mica end-
members.

The reader is referred to the earlier paper (STOESSELL,
1979) for a discussion of the bulk compositional differences
between the simulated illites and their natural counter-
parts. The major deficiency is the lack of a ferric mica
end-member in the simulated illite.

LOCAL ELECTROSTATIC BALANCE
Entropy of mixing
The electrostatic model is a regular solution with
no excess entropy of mixing. The molar entropy of
mixing, AS,,,, is given by Boltzmann’s relation for the
molar configurational entropy of mixing, AS;..

AS,., = kln W (1)
where k is Boltzmann’s constant and W is the ratio of
distinguishable lattice configurations in one mole of
structural units between the solid solution and the
unmixed end-members.

The cation configuration of each structural unit
within a solid solution is part of a set of distinguish-
able cation configurations that are each balanced
electrostatically. A much smaller set exists for each of
the end-members. W becomes the ratio of distinguish-
able random permutations of one mole of structural
units between the solid solution and the end-
members.

The different possible combinations of cations in
the 3 site classes, which satisfy the electrostatic
balance per structural unit, are listed in Table 1.
There are 20 possible combinations in the solid sol-
ution and 1 for each of the end-members. Additional
cation combinations will satisfy the electrostatic
balance; however, their presence, from mass balance
considerations, would require the existence of other
unbalanced combinations. For example, mixing of
cations between 4 structural units of muscovite could
result in Al occupying all 7 of the T and O sites in one
structural unit. However, each of the other 3 struc-
tural units will be electrostatically unbalanced.

The distinguishable cation configurations result
from permutations of cations within site classes in
each cation combination listed in Table 1. There are
223 possible distinguishable cation configurations for
a structural unit within the solid solution and 23 in
the unmixed end-members.

In the following discussion the subscripts i and j
will refer to cation combinations in Table 1 for the
solid solution and the end-members, respectively.

Let P; be the probability that a randomly selected
unit structure has the ith cation combination. Then
P./g; is the probability that the unit structure has one
of the g; distinguishable cation configurations result-
ing from permutations in the ith cation combination.
X;/g; is the corresponding probability in the unmixed
end-members where X ; is the mole fraction of the jth
end-member. W can be written as a multinomial coef-
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Table 1.

Permissible Structural Units

solution or Structural unit

end-member cation combinations

Distinguishable

permutations

Average site interactions

within structural units

1 0 T g 0 T
Solution

1 E AL Al E¥ si $i Si Si 3 Al,Al; 2A1,E 281,81

2 Mg Mg Mg 1 3Mg,Mg

3 Fe Mg Mg 3 Mg,Mg; 2Mg,Fe

4 Fe Fe Mg 3 Fe,Fe; 2Mg,Fe

5 Fe Fe Fe 1 3Fe,Fe

6 K Al Mg E 6 Al,E; Al,Mg; Mg,E

7 Al Fe E 6 Al,E; Al,Fe; Fe,E

8 E al Mg Mg Al Si &1 St 12 Mg,Mg; 24l1,Mg Al,Si; Si,Si

9 Al Fe Mg 24 Al,Mg; Al,Fe; Mg,Fe

10 Al Fe Fe 12 Fe,Fe; 2Al,Fe

11 K Al AL E 12 a1,Al; 2Al,E

12 Mg Mz Mg 4 3Mg,Mg

13 Fe Mg Mg 12 Mg,Mg; 2Mg,Fe

1o Fe Fe Mg 12 Fe,Fe; ZMg,Fe

15 Fe Fe ke 4 3Fe,Fe

16 £ al Al Mg Al Al Si Si 1o Al,Al; 24l,MNg (1/3)a1,A1; (1/3)8i,81; (4/3)A1,S1

17 Al Al Fe 18 Al,Al; 2Al,Pe

18 K Al Mg Mg 18 Mg,Mg; 241,Mg

19 Al Fe Mg 36 Al,Mg; Al,Fe; Mg,Fe

20 Al Fe Fe 13 Fe,Fe; 2Al,Fe
End-uenbers
Muscovite K al Al E Al Si Si Si 12 Al,Al; 2AL,E 41,813 Si,S1
Pyro-
phyllite E Al Al B 5i 81 i 8i 3 Al,Al; 2AL1,E 28i,8i
Phlogo-
pite K Mg Mg Mg Al Si Si Si 4 IMg,Mg Al,Si; Si,Si
Arnite K Fe Fe Fe Al Si Si Si 4 3Fe,Fe Al,Si; Si,Si

*E signifies an empty site.

ficient with factorial terms containing P;/g; and X ;/g;:
Al

(%))
gy
()

where A is Avogadro’s number.

Equation (2) can be simplified using Stirling’s
approximation, the identity k = R/A, and these 2
relations:

ASni = kln

@

YP=1 3)

and

Il

2 X;

j
where R is the universal gas constant. The expression
for AS,,;, becomes:

- P
ASpix = ——R<Z Piln—+3% X;In gj>. 4)
i i J

i

g; and g; are listed in Table 1. Equation (4) becomes:
] P,
AS,.. = —R<Z P;ln = 4+ X, In12
i gi

+xwm3+xmm4+xmm0.w)

The only unknowns in eqn (5) are the probabilities,
P;, in the solid solution. Only 8 of the P; values for

the 20 cation combinations are independent. P; for a
cation combination containing n Fe?” cations must

equal
Xonn\" i
74
Xphl Im

where the mth cation combination is identical to the
ith combination except for the replacement of n Fe?*
cations with n Mg? ™ cations.

The correct P; values, for the mixing model, are those

that maximize
P,
- Y P ln<—'>
i gi

subject to the constraint of eqn (3) and any 3 indepen-
dent mass relations that define the bulk composition.
In this study the maximization was done using
Lagrange multipliers to produce a set of 12 nonlinear
equations that were solved with a Newton—-Raphson
iteration procedure.

Computed P; probabilities for a few selected bulk
illite compositions are listed in Table 2, together with
values of AS,,, calculated from eqn (5).

AS,,;, is related to the ideal activity, a?, of the jth
end-member by the expression below:

Asmix = Asis = —RZ lena?
j

where af corresponds to the probability of picking at
random out of the solid solution, a structural unit of
the jth end-member (STOESSELL, 1979). Ideal activity
trends will not be discussed in this paper; however, it
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Table 2. P, in solution, AS .
1 W1lX

RONALD K. STOESSELL

in cal/°i/mole, and end-member Xk

for selected illite compositions

Cation
combinations Illites*
Table 1 a b c d e
r, 3.06 E-1%% 1,60 E-1  1.21 E-1  1.21 B-1  2.47 E-1
v, 1.14 -3 3.87 E-3  5.33 E~3  6.67 E-4  1.24 E-3
7, 3.79 E-4 2.05 E-3  8.00 E-3  4.00 E-3  3.73 E-3
2, 421 E-5 3.61 E-4  4.00 E-3  8.00 E-3  3.73 E-3
vy 1.56 E~6 2.13 =5 6.67 E-4  5.33 E~3  1.24 E-3
P 1.37 B-1 2.11 E-1  2.04 E-1  1.02 E-1  1.23 E~-1
S 1.53 E-2 3.72 £=2  1.02 E-1  2.04 E-1  1.23 B-1
N 2.15 B-2 4.25 E-2 4,28 E-2  1.07 E-2  1.85 E-2
Py 4.77 E-3 1.50 E-2  4.28 E-2  4.28 B2 3.7l E-2
Pl 2.65 E~4 1.32 E-3  1.07 E-2  4.28 E~2  1.85 E-2
e, 4.52 E-1 3.86 E-1 2,73 E-1  2.73 E-1  3.06 E-l
P, 1.56 B-3 9.00 E-3  1.20 E-2  1.50 E-3  1.54 E~3
P, 5.18 E~4 4.76 E~3  1.80 E-2  8.98 E~3  4.63 E-3
Pl. 5.76 E~5 8.41 E-4  8.98 E=3  1.80 E-2  4.63 E-3
?ls 2.13 E-6 4.95 E-5  1.50 E-3  1.20 F~2  1.54 E-3
Pl 5.06 E~2 5.85 E<2  4.29 E-2  2.14 E~2  3.45 E-2 '
v, 5.62 E-3 1.03 E-2  2.14 E-2  4£.29 E-2  3.45 E-2
P1s 1.10 E-2 3.71 £=2 3.60 E-2  9.00 E-3  8.63 E-3
Pl 2.45 E-3 1.31 E-2  3.60 E-2  3.60 E-2  1.73 E-2
%20 1.36 E-4 1.16 E-3  9.00 E-3  3.60 E-2  8.63 E-3
A§mix 3.17 4.20 5.34 5.34 4.62
X 0.50 0.50 0.40 0.40 0.40
- 0.40 0.30 0.30 0.30 0.40
%ot 0.09 0.17 0.20 0.10 0.10
x 0.01 0.03 0.10 0.20 0.10
*a) Ky eotAl) goMBg.27F%g. 037810, 60513, 40019(0) 5
(B Ry 70(AL) 60M8g. 51720, 097810, 70513.30010(OR),
() Ko 7081 4oMEg_goFen. 507410, 70513, 300105010,
() Ky 20¢A1 40M8g. 30720, 607210, 70513, 30010 (%R,
(&) Ko e0Al) 6oMBg.30F %0, 3072 0. 60513,40010(0W) 5
**g-x = 107X

is of interest to note that the ideal activities of pyro-
phyllite, muscovite, phlogopite, and annite are given
by Py, Pyy, Pys, and Py, respectively, in the electro-
static model (see Table 1).

Enthalpy of mixing

AH_;,, the molar enthalpy of mixing, is assumed to
result only from interactions between adjacent sites in
the same class. Sixteen distinguishable pairs occur in
the solid solution, and 10 in the unmixed end-
members. These include all possible y,z pairs of
cations and/or empty sites. The number of moles of
v,z pairs in the Xth site class due to mixing one mole
of structural units is nX, .. Note that nX,, will be
negative if mixing results in a decrease in the number
of y,z pairs. The y,z contribution to AH,,, is the
product of nX, , and the molar interaction parameter,
WX,,. The sum of the contribution of all 16 dis-
tinguishable pairs is equal to AH,,;,.

Within the Xth site class, the computation of nX, ,

must satisfy two constraints. The total numbers of y
and z occupancies and the total number of sites can-
not change due to mixing. These constraints dictate
some simple relations of the type listed below:

nlge= —2nlgg = —2nlge
and
=2n0p a1 =

Using these constraints an expression for AH,,,
can be written in terms of EX,, the molar exchange
energies.

AH . = nly g Elg g + nTa 5 ETars:
+ 10, EO E + nOAI.MgEAI.Mg

nOarg + NOamg + PO4 Fe.

+ 1045 EOp pe + nOMg.EEMg.E
+ nOFe,EEFc,E + "OMg.FeFGMg.Fe (6)
where

EX,. = WX,, - ¥(WX,, + WX,,). (N



Refinements in a site mixing model for illites

1737

T T T T T T T T
ELECTROSTATIC MODEL RANDOM MODEL
0.2 + Xpht + x B
20
X
phi + ann\\ 0 S
o1} 1 qe./ .
a 9, &
- Xpyr = 0
c 0 o? PY
0'0
ot AR .
]
A&
1 1 Il 1 1 i 1 1
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

meS

Fig. 1. The compositional dependence of nTys; in the electrostatic and random models.

In the random model AH ,; was written in terms of
4 molar site interaction parameters (STOESSELL, 1979,
eqn (26) for AH,,). These parameters are related to
the molar exchange energies by these relations:

WTI = 6 Ely ; + 0.75 ETas:
WOl = —4 EOp g + 12EO, y, + 6EOyg e
WO2= —4 EO,,  + 12EO, r. + 6 EOp, &
and
WO3 = 18 EOyg .

In the electrostatic model, nX,, is divided into the
pairs occurring within electrostatically balanced
structural units and the pairs resulting between sites
in adjacent units. The number of y,z pairs occurring
in a structural unit of each possible cation configur-
ation is listed in Table 1. The number of y,z pairs
within the units is computed from the probabilities of
occurrence of these cation configurations for the bulk
composition. Because the units are distributed ran-
domly, the number of y,z pairs between adjacent units
can be calculated within the random model. Two-
thirds of the adjacent sites in the O and T site classes
and all of them in the Ith site class occur between
units. The total number of y,z pairs due to mixing is
computed by the random model, multiplied by the
appropriate fraction, and then added to the number
of such pairs occurring within units to give nX, ..

In illites having compositions corresponding to
natural illites, the differences in nX,. are usually
minor between the random and electrostatic models.
The major exception is nT,, g, Which is significantly
less in the electrostatic model, as shown on Fig. 1.

QUASI-CHEMICAL APPROXIMATION

The canonical partition function is used in the
quasi-chemical model. GUGGENHEM (1952, pp. 42-44)
derived the partition function Q for the quasi-chemi-

cal mixing of 2 types of particles over equivalent sites.
The extension to the illite solid solution is outlined
below.

Q...., the partition function for mixing in the illite
solution, is a function of the partition functions of the
end-members (Q,,,, Qe Qpnis Qann) and of the sol-
ution (Q,,,) which contains one mole of units.

Qsol
Q Qmusthl Qunn

pyr

Qmix = (8)

where for the jth end-members or solution
Q; = g exp(—¢,;/kT)
“gr.jexp(—er;/kT) go,; exp(—¢o,/kT). (9)

gx. is the number of configurations in the Xth site
class having energy ey ; due to interactions between
adjacent sites. Each factor, gx ;- exp(—ex,;/kT), is the
maximum term in a summation over all possible
values of ey ;.

For a given composition and temperature, gy ; and
€x; are functions of the numbers of moles of y,z pairs
(y # z) and of the exchange energies defined by eqn
(7). The procedure followed in this study to determine
Q; was to maximize gy ;exp(—ex;/kT) subject to
assumed values of the exchange energies.

Unless otherwise noted, the following discussion
concerns the jth end-member or solution. The sub-
script j has been omitted.

From GUGGENHEIM (1952), it can be shown that

2mX¥
=AS,.x+R Xk, Inf —22
k ln gx is, X yg m ¥ n<a Zx lx n>

2mX
_ In[ Z222v2 10
R yzz mX, . n(a 7l n> (10

where o =2 unless y = z, then a = 1. AS, x and
mX?¥, are the configurational entropy and the number
of moles of y, z pairs, respectively, in the Xth site class
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assuming random mixing. Zx and Iy are the cation
coordination number and the number of sites per
structural unit, respectively, in the Xth site class. n is
the number of moles of j units.

AS,, x and mX}, can be computed from the random
model, and mass balance relations of the form

mX,, = HZxmX, = ¥ mX,.)y2n) (1)
y.z

can be used to eliminate mX, .(y = z) as independent
variables in eqn (10). mX,, is the number of moles of y
site occupancies in the Xth site class.

By definition

ex =y mX, ., WX, .. (12)
».z

Substitution of exchange energies into eqn (12) yields

Gx = Z (me,zEYy,z )y#z + D

y.z

(13)

where D is a constant, dependent upon composition,
which cancels out in eqn (8).

Values of mX,, maximizing gy exp(—ex/kT), in eqn
(9), can be determined with eqns (10), (11), and (13). In
cases where only mX, , is possible, gx is unity. If only
one y,z pair occurs such that y # z, the procedure
outlined by GUGGENHEIM (1952) yields an expression
for mX,,. Only in the O sites in the solution are
different y,z pairs possible such that y # z. The par-
tial derivatives of g, exp(—eo/kT) with respect to
mO, , are used to produce a set of nonlinear equa-
tions. These are set equal to zero and solved for the
solution set of mO, , using a Newton—Raphson itera-
tion procedure.

Evaluation of Q,;, allows the computation of
AG,,;,, the molar free energy of mixing, and AS,,,.

AG, = —kT In Qyy, (14)

and

_ olnQ_;
AS.., = kT M+ klnQ,,
mix 6T + n 'mix

(15)

where the partial of In Q,;, with respect to T was
made using a finite difference approximation.

EXCHANGE ENERGIES

The available precise experimental data for illites
(RouTson and KITTRICK, 1971) are inadequate to de-
termine EX, , in ferric iron-free illites. The addition of
a ferric mica end-member, when its thermodynamic
properties are known, will aid in back-calculating
EX, .. Not only experimental data but also assumed
equilibrium solubilities obtained from reservoir
studies (MERINO and RaNsoM, 1981) may be of use in
this regard.

Interchange energies used by GUGGENHEIM (1952)
are equivalent on a molar basis to ZyxEX,,. For
binary mixing, GUGGENHEIM (1952) suggests limiting
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the absolute magnitude of EX,, to 2 RT/Zy for mix-
ing involving zero excess entropy, e.g. the random and
electrostatic models, and RT In(Zy/(Zx — 2)) for
quasi-chemical mixing. According to Guggenheim,
the latter limit is a minimum value which can be
larger, depending on the nature of the phase.

In this paper, assumed values of EX,, will be used
to delineate their effects on AG,,, in all 3 models.
Absolute values greater than 2RT/Z, will be used in
the random and electrostatic models for comparison
with the quasi-chemical model.

RESULTS AND DISCUSSION

Compositional dependencies of AS,, and AG,,,
predicted by the three models, are shown on Figs 2-5
for illites composed of 3 end-members. Annite was
excluded to reduce the number of exchange energies
from 8 to 5. Annite adds ferrous iron to the O sites;
however, ferrous iron is a very minor component in
natural illites (WEAVER and POLLARD, 1975).

The compositional variations in AS,;, shown on
Fig. 2 for the random and electrostatic models are
independent of the exchange energies. For illites of
composition found in nature (predominantly diocta-
hedral) AS,,;, in the electrostatic model is about 1
entropy unit less than in the random model. The
quasi-chemical model reduces to the random model
when the exchange energies are zero. For non-zero
energies, AS., in the quasi-chemical model lies
between those of the other two models.

AS,.;. is largest in all three models in illites having
large mole fractions of both the trioctahedral mica

Xmos

Random
and
Quosi-chemical
(EX,,=0O)
Models

Local
Electrostatic
Model

Xl AV

Fig. 2. AS, compositional dependence in the random.
electrostatic, and quasi-chemical (EX, , = 0) models.
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X mus

AG i
cal/mole

100°C

Locol Electrostatic
Model

= ETaisi

E6A|,Mq =

Fig. 3. AG,,;, compositional dependence at 100°C in the 3 models using Z; ET, . =
Z, EIK £=Zo EOAI = —Zo EOAI Mg =

phlogopite and the dioctahedral mica pyrophyilite.
This is related to the assumption of similar order—
disorder states in both the illite and the end-members.
Muscovite has the largest configurational entropy of
the end-members. Subtraction of this entropy from
that present in the illite reduces AS,,;, in illites having
large mole fractions of muscovite.

Negative values of Ely g, ET,,;, and EO,, com-

= EQae =

ET)Mg,E =

Random
Model

Quasi-chemical
Model

-250 col/mole

250 cal/mole

X X ohl

~1.0RT and

ey

—Zo EOyyp = —20RT.

bined with positive values of EO y, and EOyy, g help
promote the stability of dioctahedral illites relative to
trioctahedral illites. Exchange energies having the
greatest effect are Elg p, EO g and EOy, . because
of the absence of these y,z pairs in the end-members.

In the quasi-chemical model, negative values of
ET,.s and EO,, ¢ will increase mT 4,5 and mO, g in
both the illite and the end-members, canceling part of

Xmus

AG mix

cal/mole

100°C

Local Electrostatic
Model

Elge =

Elasi =

Xoye

X phi

Fig. 4. AG,,

compositional
Z1 ETpsi= —20RT and Zo EOp g = —Z EOpyq, =

dependence at

G.C.A 4510 ¥

~250 cal/mole
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Fig. 5. AG,,;, compositional dependence at 100°C in the 3 models using Z; ETa.s = —20RT and
ZyEly gy =Zo EOuye = —Zo EOpmg = —Zo EOy g = —40RT.

the expected decrease in AH .. nT.. (X #0)
actually becomes less positive with decreasing ET g
because of a larger increase in mT,,g in the end-
members relative to the illite solid solution. In all 3
models, nO,, ; is negative in any illite having a non-
zero trioctahedral mole fraction.

The AG,,;, compositional variations in Figs 3-5 are
at 100°C. Diagenetic illite is commonly observed in
feldspathic reservoirs at approximately this tempera-
ture (MERINO and RANSOM, 1981; MICHAEL WILSON,
personal communication, 1980).

EX, . absolute values have been set either to 250
or 500 cal/mol for the AG,,, computations used in
Figs 3-5. The sign of EX,, was set to maximize stab-
ility of predominantly dioctahedral illites relative to
trioctahedral illites.

For zero exchange energies, minimum AG ;, corre-
sponds to maximum AS,, in Fig. 2. The AG,,, mini-
mum is shifted away from the phlogopite corner in
Fig. 3; and in Fig. 4. predominantly trioctahedral
itlites are destabilized in all 3 models. The trend is
continued in Fig. 5. Differences between Figs 4 and 5
are due to a decrease of 250 cal/mol in El ., reflec-
ting the significances of pair interactions not existing
in the end-member micas. Maximum destabilization
of trioctahedral illites is predicted by the electrostatic
model; however, maximum stability of dioctahedral
illites is predicted by the quasi-chemical model. AG .,
values in the random model fall between those pre-
dicted by the other 2 models. Differences in AG,,,
between the random and quasi-chemical models de-
crease with decreasing mole fraction of phlogopite.

The relative differences in AG,,, are those expected
based on assumptions inherent in each model. In the

electrostatic model, the local electrostatic balance per
structural unit is probably too restrictive, leading to
underestimation of AS,,. The neglect of exchange
energies in determining nX,, values causes over-
estimation of AH,,,. Hence, AG,,;, in the electrostatic
model is overestimated. In the quasi-chemical model,
the assumption of independence of pairs on the lattice
and neglect of local electrostatic balance results in
overestimating AS,,,, consequently underestimating
AG.,;,. Within the random model, random mixing
leads to overestimation of both AS,;, and AH .
resulting in ‘some’ error cancellation in AG ;.

A quasi-chemical model containing local electro-
static balance would be more accurate than those dis-
cussed here. The partition function of this model for
illites has not been derived; however, AG,,;, should
fall between those predicted by the quasi-chemical
and electrostatic models or presumably close to that
predicted by the random model. Interestingly, because
of error cancellation, the random model may yet
prove useful for predicting AG,,;, in geochemical cal-
culations. That use, however, must wait until more
information is available on the exchange energies.
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